ADA PINPOINT TOPIC PACKS

- (1) Simplifying Algebraic Fractions (5 Qns)
- (2) Harder Algebraic Fractions (4 Qns)
- (3) Adding Algebraic Fractions (4 Qns)

50_to_100_Percent_Pinpoint_AI_Pack

Time Allocation = 54mins, Max = 48 Marks

Calculated Grade Boundaries:

Grade	Marks
5-	4
5	7
5- 5 5+ 6-	10
6-	13
6 6+ 7- 7	16
6+	20
7-	23
7	26
7+	29 32
7+ 8-	32
8	36
8+	39
9-	42
9	45
9+	48

Question 1 (AO1): 42% of students got this right (3 marks)

18.	Write as a single fraction in its simplest form	x-4 $x+3$	
			(Total 3 marks)

Question 2 (AO1): 40% of students got this right (3 marks)

12. (a) Simplify fully $\frac{x^2 + 3x - 4}{2x^2 - 5x + 3}$

Question 3 (AO1): 36% of students got this right (5 marks)

20. Solve
$$\frac{4}{x+3} + \frac{3}{2x-1} = 1$$

(Total 5 marks)

Question 4 (AO1): (No Calc) 35% of students got this right (3 marks)

(b) Write $\frac{4}{x+2} + \frac{3}{x-2}$ as a single fraction in its simplest form. 12.

Question 5 (AO1): 30% of students got this right (3 marks)

14 (a) Simplify
$$\frac{x^2-16}{2x^2-5x-12}$$

(3)

Question 6 (AO1): (No Calc) 23% of students got this right (3 marks)

17. (b) Show that
$$\frac{1}{2x^2 + x - 15} \div \frac{1}{3x^2 + 9x}$$
 simplifies to $\frac{ax}{bx + c}$ where a, b and c are integers.

(3)

(Total for Question 17 is 5 marks)

Question 7 (AO1): 21% of students got this right (4 marks)

20 Show that
$$\frac{3x+6}{x^2-3x-10} \div \frac{x+5}{x^3-25x}$$
 simplifies to ax where a is an integer.

Question 8 (AO1): 18% of students got this right (2 marks)

Show that
$$\frac{a}{b+1} - \frac{a}{(b+1)^2}$$
 can be written as $\frac{ab}{(b+1)^2}$

Question 9 (AO1): (No Calc) 14% of students got this right (3 marks)

17 (b) Simplify fully
$$\frac{3-4x-4x^2}{2x^2-7x+3}$$

Question 10 (AO2): 13% of students got this right (4 marks)

27. Solve the equation
$$\frac{x}{2} - \frac{2}{x+1} = 1$$
.

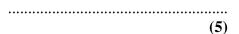
(Total 4 marks)

Question 11 (AO3): 10% of students got this right (5 marks)

21 Given that

$$2x-1 : x-4 = 16x+1 : 2x-1$$

find the possible values of x.


Question 12 (AO3): 7% of students got this right (5 marks)

21.
$$f(x) = \frac{1}{x+2} + \frac{1}{x-3}$$

Given that f(x) = 4

(c) find the possible values of x.

Give your answer in the form $\frac{p \pm \sqrt{q}}{r}$, where p, q and r are positive integers.

Question 13 (AO2): 5% of students got this right (5 marks)

24. Solve
$$\frac{5(2x+1)^2}{4x+5} = 5x-1$$

(Total 5 marks)

Answers to Qn 1 (AO1): 42% of students got this right

Que	stion	Working	Answer	Mark	Notes
18.	(c)	$\frac{2(x+3) - (x-4)}{(x-4)(x+3)}$ $= \frac{2x+6-x+4}{(x-4)(x+3)}$	x+10	3	M1 for common denominator of $(x-4)(x+$
		$\frac{1}{(x-4)(x+3)}$	$\sqrt{(x-4)(x+3)}$	2	3)
		(x + y(x + 3))	$\begin{bmatrix} (\lambda - \tau)(\lambda + z) \end{bmatrix}$,	
		2-16-14			2(x+3) $(x-4)$
		$=\frac{2x+6-x+4}{}$			M1 for $\frac{2(x+3)}{(x-4)(x+3)} - \frac{(x-4)}{(x-4)(x+3)}$
		(x-4)(x+3)			(x-4)(x+3) $(x-4)(x+3)$
					$\frac{2(x+3)-(x-4)}{(x-4)(x+3)}$ oe condone missing
					(x-4)(x+3) or condoing missing
					brackets around $x - 4$
					A1 for $\frac{x+10}{(x-4)(x+3)}$ or $\frac{x+10}{x^2-x-12}$
			5'	L	raings Automatic Differentiation Algerithms

Answers to Qn 2 (AO1): 40% of students got this right

12.	(a)	$\frac{(x+4)(x-1)}{(2x-3)(x-1)}$	$\frac{x+4}{2x-3}$	M1 for $(x + 4)(x - 1)$ M1 for $(2x - 3)(x - 1)$
				A1 cao

Answers to Qn 3 (AO1): 36% of students got this right

20.	4(2x-1)+3(x+3)	x = -1, 4	5	M1 multiplying both sides by a common denominator
	=(x+3)(2x-1)	,		of $(x+3)(2x-1)$ (oe)
	$8x - 4 + 3x + 9$ $= 2x^{2} - x + 6x - 3$			or $\frac{4(2x-1)+3(x+3)}{(x+3)(2x-1)}$ (= 1) or better seen
	$2x^2 - 6x - 8 = 0$			or multiplying all 3 terms by $(x + 3)$ or by $(2x - 1)$
	2(x-4)(x+1) = 0			M1 (indep) for $2x^2 - x + 6x - 3$ oe seen or $8x - 4 + 3x + 9$ (oe)
				A1 for $2x^2 - 6x - 8$ (oe) or $x^2 - 3x - 4$ (= 0)
				M1 (dep on M2) for correct method to solve a 3 term quadratic
				A1 cao for both solutions

Answers to Qn 4 (AO1): (No Calc) 35% of students got this right

12.	(b)	$\frac{4(x-2)}{(x+2)(x-2)} + \frac{3(x+2)}{(x+2)(x-2)}$	$\frac{7x-2}{(x+2)(x-2)}$	3	M1 for denominator $(x + 2)(x - 2)$ (or equivalent) or $x^2 - 4$ M1 for $\frac{4(x-2)}{(x+2)(x-2)}$ (or equivalent) or $\frac{3(x+2)}{(x+2)(x-2)}$ (or equivalent) (NB. The denominator must be $(x + 2)(x - 2)$ or $x^2 - 4$ or
					another suitable common denominator) A1 for $\frac{7x-2}{(x+2)(x-2)}$ or $\frac{7x-2}{x^2-4}$ SC: If no marks awarded then award B1 for $\frac{4(x-2)}{x^2-2} + \frac{3(x+2)}{x^2-2}$ (or equivalent)

Answers to Qn 5 (AO1): 30% of students got this right

Question 14 (Total 6 marks)

Part	Working or answer an examiner might expect to see	Mark	Notes
(a)	$2x^2 - 5x - 12 = (2x + 3)(x - 4)$	M1	This mark is given for factorising the denominator
	$x^2 - 16 = (x+4)(x-4)$	M1	This mark is given for factorising the numerator
	$\frac{x+4}{2x+3}$	A1	This mark is given for the correct answer only

Answers to Qn 6 (AO1): (No Calc) 23% of students got this right

17 (b)	<u>3x</u>	M1	factorise $2x^2+x-15$ [= $(2x-5)(x+3)$] or $3x^2+9x$ [= $3x(x+3)$]
	2x-5	M1	$\frac{1}{(2x-5)(x+3)} \times \frac{3x(x+3)}{1}$
		A 1	cao

Answers to Qn 7 (AO1): 21% of students got this right

Paper 1MA	1: 1H			
Question	Working	Answer		Notes
20		3 <i>x</i>	M1	Factorising numerator and denominator of first fraction $\frac{3(x+2)}{(x-5)(x+2)}$ $(=\frac{3}{(x-5)})$
			M1	Factorising denominator of second fraction
			M1	$\frac{x+5}{x(x+5)(x-5)} (=\frac{1}{x(x-5)})$ Multiplication by reciprocal $\frac{3(x+2)}{(x-5)(x+2)} \times \frac{x(x+5)(x-5)}{(x+5)}$
			A1	Completing algebra to reach $3x$
	0			at I a a main and Australia at 12 Difference of 12 and 12
	Question (yraer Created by P	inpoii	nt Learnings Automatic Differentiation Algorithmr

Answers to Qn 8 (AO1): 18% of students got this right

Paper 1MA1	1: 3H		
Question	Working	Answer	Notes
15		shown	for $\frac{a(b+1)-a}{(b+1)^2}$ or $\frac{a(b+1)^2-a(b+1)}{(b+1)^3}$ oe
			C1 complete chain of reasoning
	Question Order Cr	eated by Pinpoii	oint Learnings Automatic Differentiation Algorithm

Answers to Qn 9 (AO1): (No Calc) 14% of students got this right

Question	Working	Answer	Mark	Notes
17 (b)		$\frac{3+2x}{2}$	M1	for $(3 + 2x)(1 - 2x)$ oe
		3-x	M1	for (2n 1)(n 2) or
			M1	for $(2x-1)(x-3)$ oe
			A1	for cancelling correctly to leave $\frac{3+2x}{3-x}$ oe
	Question Order Create	∌d by Pinpoint	Learning	s Automatic Differentiation Algorith

Answers to Qn 10 (AO2): 13% of students got this right

27. Solve the equation
$$\frac{x}{2} - \frac{2}{x+1} = 1$$

$$\frac{x(x+1)-\lambda(\lambda)}{\lambda(x+1)} = 1$$

$$\frac{x^{2}+x-A}{\lambda^{2}+x-A} = 2x+\lambda$$

$$\frac{x^{2}-x-6}{\lambda(x+2)} = 0$$

$$\frac{(x-3)(x+2)}{\lambda(x+2)} = 0$$

$$\frac{x=3}{\lambda(x+2)} = 0$$

Answers to Qn 11 (AO3): 10% of students got this right

Paper 1MA1: 2H				
Question	Working	Answer		Notes
21	$\frac{2x-1}{x-4} = \frac{16x+1}{2x-1}$	$-\frac{1}{12}$, 5	P1	for process to write as an equation
	$(2x-1)^2 = (16x+1)(x-4)$		P1	for process to clear the fractions
	$12x^2 - 59x - 5 = 0$		P1	for process to write equation in form
				$ax^2 + bx + c = 0$
	(12x+1)(x-5) = 0		P1	for process to solve the equation
			A1	cao

Answers to Qn 12 (AO3): 7% of students got this right

2	1	(c)	$3 \pm \sqrt{101}$	M1	for representing the equation as a single fraction
			4	M1	for simplifying and rearranging to a quadratic equal to zero
				A1	for $4x^2 - 6x - 23 = 0$
				M1	for a complete method to solve their quadratic
				A1	oe

Answers to Qn 13 (AO2): 5% of students got this right

24. Solve
$$\frac{5(2x+1)^2}{4x+5} = 5x - 1$$

$$5(2x+1)^{2} = (5x-1)(4x+5)$$

$$5(4x^{2}+4x+1) = 20x^{2}+21x-5$$

$$20x^{2}+20x+5 = 20x^{2}+21x-5$$

$$20x+5 = 21x-5$$

$$x = 10$$